Completeness of Category-Based Equational Deduction
نویسنده
چکیده
Equational deduction is generalised within a category-based abstract model theory framework, and proved complete under a hypothesis of quantiier projectivity, using a semantic treatment that regards quantiiers as models rather than variables, and regards valuations as model morphisms rather than functions. Applications include many and order sorted conditional] equational logics, Horn clause logic, equational deduction modulo a theory, constraint logics, and more, as well as any possible combination among them. In the cases of equational deduction modulo a theory and of constraint logic the completeness result is new. One important consequence is an abstract version of Herbrand's Theorem, which provides an abstract model theoretic foundations for equational and constraint logic programming.
منابع مشابه
The Completeness Theorem for Monads in Categories of Sorted Sets
Birkhoff’s completeness theorem of equational logic asserts the coincidence of the model-theoretic and proof-theoretic consequence relations. Goguen and Meseguer, giving a sound and adequate system of inference rules for finitary many-sorted equational deduction, generalized the completeness theorem of Birkhoff to the completeness of finitary many-sorted equational logic and provided simultaneo...
متن کاملTerm Equational Systems and Logics
We introduce an abstract general notion of system of equations between terms, called Term Equational System, and develop a sound logical deduction system, called Term Equational Logic, for equational reasoning. Further, we give an analysis of algebraic free constructions that together with an internal completeness result may be used to synthesise complete equational logics. Indeed, as an applic...
متن کاملTerm Equational Rewrite Systems and Logics
We introduce an abstract general notion of system of equations and rewrites between terms, called Term Equational Rewrite System (TERS), and develop a sound logical deduction system, called Term Equational Rewrite Logic (TERL), to reason about equality and rewriting. Further, we give an analysis of algebraic free constructions which together with an internal completeness result may be used to s...
متن کاملOn the Completeness Theorem of Many-sorted Equational Logic and the Equivalence between Hall Algebras and Bénabou Theories
The completeness theorem of equational logic of Birkhoff asserts the coincidence of the model-theoretic and proof-theoretic consequence relations. Goguen and Meseguer, giving a sound and adequate system of inference rules for many-sorted deduction, founded ultimately on the congruences on Hall algebras, generalized the completeness theorem of Birkhoff to the completeness theorem of many-sorted ...
متن کاملCategory-based Semantics for Equational and Constraint Logic Programming
This thesis proposes a general framework for equational logic programming, called catf:gory based equational logic by placing the general principles underlying the design of the pro gramming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equational deduction to an arbitrary category satisfy ing certain natural conditions; completeness i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 5 شماره
صفحات -
تاریخ انتشار 1995